Can presynaptic depolarization release transmitter without calcium influx?
نویسندگان
چکیده
Recent experimental evidence suggesting that presynaptic depolarization can evoke transmitter release without calcium influx has been re-examined. The presynaptic terminal of the squid giant synapse can be depolarized by variable amounts while recording presynaptic calcium current under voltage clamp and postsynaptic responses. Small depolarizations open few calcium channels with large single channel currents. Large depolarizations approaching the calcium equilibrium potential open many channels with small single channel currents. When responses to small and large depolarizations eliciting similar total macroscopic calcium currents are compared, the large pulses evoke more transmitter release. This apparent voltage-dependence of transmitter release may be explained by the greater overlap of calcium concentration domains surrounding single open calcium channels when many closely apposed channels open at large depolarizations. This channel domain overlap leads to higher calcium concentrations at transmitter release sites and more release for large depolarizations than for small depolarizations which open few widely dispersed channels. At neuromuscular junctions, a subthreshold depolarizing pulse to motor nerve terminals may release over a thousand times as much transmitter if it follows a brief train of presynaptic action potentials than if it occurs in isolation. This huge synaptic facilitation has been taken as indicative of a direct effect of voltage which is manifest only when prior activity raises presynaptic resting calcium levels. This large facilitation is actually due to a post-tetanic supernormal excitability in motor nerve terminals, causing the previously subthreshold test pulse to become suprathreshold and elicit a presynaptic action potential. When motor nerve terminals are depolarized by two pulses, as the first pulse increases above a certain level it evokes more transmitter release but less facilitation of the response to the second pulse.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina.
According to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when...
متن کاملRetrograde Inhibition of Presynaptic Calcium Influx by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells
Brief depolarization of cerebellar Purkinje cells was found to inhibit parallel fiber and climbing fiber EPSCs for tens of seconds. This depolarization-induced suppression of excitation (DSE) is accompanied by altered paired-pulse plasticity, suggesting a presynaptic locus. Fluorometric imaging revealed that postsynaptic depolarization also reduces presynaptic calcium influx. The inhibition of ...
متن کاملInhibition of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx Abbreviated title: Presynaptic inhibition of olfactory receptor neurons
We investigated the cellular mechanism underlying presynaptic regulation of olfactory receptor neuron (ORN) input to the mouse olfactory bulb using optical imaging techniques that selectively report activity in the ORN presynaptic terminal. First, we loaded ORNs with calcium-sensitive dye and imaged stimulus-evoked calcium influx in a slice preparation. Single olfactory nerve shocks evoked rapi...
متن کاملDepletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem.
1. A new form of synaptic depression of excitatory synaptic transmission was observed when making voltage-clamp recordings from large presynaptic terminals, the calyces of Held and postsynaptic cells, the principal cells of the medial nucleus of the trapezoid body (MNTB), in slices of the rat auditory brainstem. 2. A short (100 ms) depolarization of the postsynaptic cell to 0 mV reduced the amp...
متن کاملPresynaptic Ca Influx at the Inhibitor of the Crayfish Neuromuscular Junction: A Photometric Study at a High Time Resolution
Vyshedskiy, Andrey and Jen-Wei Lin. Presynaptic Ca influx at the inhibitor of the crayfish neuromuscular junction: a photometric study at a high time resolution. J. Neurophysiol. 83: 552–562, 2000. Presynaptic calcium influx at the inhibitor of the crayfish neuromuscular junction was investigated by measuring fluorescence transients generated by calcium-sensitive dyes. This approach allowed us ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal de physiologie
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1986